Analysis of recovery type a posteriori error estimators for mildly structured grids

نویسندگان

  • Jinchao Xu
  • Zhimin Zhang
چکیده

Some recovery type error estimators for linear finite elements are analyzed under O(h1+α) (α > 0) regular grids. Superconvergence of order O(h1+ρ) (0 < ρ ≤ α) is established for recovered gradients by three different methods. As a consequence, a posteriori error estimators based on those recovery methods are asymptotically exact.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Superconvergence of quadratic finite elements on mildly structured grids

Superconvergence estimates are studied in this paper on quadratic finite element discretizations for second order elliptic boundary value problems on mildly structured triangular meshes. For a large class of practically useful grids, the finite element solution uh is proven to be superclose to the interpolant uI and as a result a postprocessing gradient recovery scheme for uh can be devised. Th...

متن کامل

Equivalent a posteriori error estimates for spectral element solutions of constrained optimal control problem in one dimension

‎In this paper‎, ‎we study spectral element approximation for a constrained‎ ‎optimal control problem in one dimension‎. ‎The equivalent a posteriori error estimators are derived for‎ ‎the control‎, ‎the state and the adjoint state approximation‎. ‎Such estimators can be used to‎ ‎construct adaptive spectral elements for the control problems.

متن کامل

A numerical study of a posteriori error estimators for convection±diusion equations

This paper presents a numerical study of a posteriori error estimators for convection±di€usion equations. The study involves the gradient indicator, an a posteriori error estimator which is based on gradient recovery, three residual-based error estimators for di€erent norms, and two error estimators which are de®ned by solutions of local Neumann problems. They are compared with respect to the r...

متن کامل

A Posteriori Error Estimates Based on the Polynomial Preserving Recovery

Superconvergence of order O(h), for some ρ > 0, is established for the gradient recovered with the Polynomial Preserving Recovery (PPR) when the mesh is mildly structured. Consequently, the PPR-recovered gradient can be used in building an asymptotically exact a posteriori error estimator.

متن کامل

Implicit a Posteriori Error Estimation Using Patch Recovery Techniques

Implicit a posteriori error estimators are developed for elliptic boundary value problems. Local problems are formulated for the error and the corresponding Neumann type boundary conditions are approximated using a new family of gradient averaging procedure. The convergence properties of the implicit error estimator are discussed independently from that of the residual type error estimators, wh...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Math. Comput.

دوره 73  شماره 

صفحات  -

تاریخ انتشار 2004